Some Thoughts About Noise, Interference, the FCC & the ARRL

The Q-Track Corporation

Bob DePierre, K8KI

October 10, 2003

Characteristics of Broadband Noise

 \sim Average = 0 \backsim Statistically flat \rightarrow same at all freqs Several types of flat noise - Readily calculable RMS value - Dominant type is usually Thermal Noise $\sim 1/f$ noise $\rightarrow 0$ freq on spectrum analyzer \sim Noise in any resistor: $e_n^2 = 4kTRB$ \sim Matched Load Noise Power \rightarrow kTB Independent of Impedance - In "dBm" terms \rightarrow N_T = -174 + 10 Log(B)

RF Link Budgets

- The idea is to find the minimum SNR that provides acceptable performance.
- $P_{RX} = P_{TX} P_{losses}$ • Free Space Loss: $\frac{(4\pi r)^2}{\lambda^2}$
 - Doubling *range* or *freq* \rightarrow 6 dB loss
 - Line of Sight case

Receiver Sensitivity

System Noise Figure: $F_{Sys} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_2} + \dots$

Old New	
F 23 d R 1 15 d	R

Ν

Amplifier Intercept Graph

Typical Ham Noise Problem

	OLD	NEW
NF	10 dB	6.1 dB
Sensitivity	-130 dBm	-134 dBm
DR3	95 dB	85 dB

Determining Impact of Interference

- A How much interference does it take to degrade reception by an unacceptable amount?
 - Who determines what is an acceptable amount?
- Situation can be modeled and graphed.
 - Math models can predict performance.
 - Depends on assumptions.
 - Must determine
 - Required SNR at the detector for acceptable performance
 - Power of received signal
 - Signal handling characteristics of the receiver
 - What is the noise normally received
 - What is the power of the received interference

Determining the Impact of Interference

	– Freqs where only thermal noise is present is a lot easier than HF.
	 Freqs propagating via LOS easier than those using lonosphere.
	- Statistical modeling most often used (various distributions)
	- Test results should be used to back up modeling rather than the reverse.
、Wh	at outsiders often think of ARRL positions
	 Special Interest Group. ALL interference is bad.
	 Only consider test analysis.
	 ARRL never predicts via math modeling.
	 ARRL never does the test properly or fairly.
	 ARRL never conducts tests with the right signal.
	 "In your face" approach. Never negotiable.