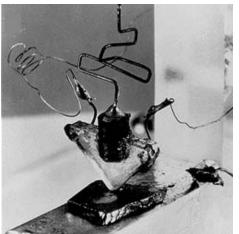
The Regency TR-1 53 Years Later

No finer gift For CHRISTMAS than the

POCKET RADIO

(USES NO TUBES)


Enjoy news, sports, music and other entertainment – anywhere – with the beautifully engineered REGENCY, WORLD'S SMALLEST STANDARD RADIO (only 3" x 5" x 11/4" – only 12 ounces).

Key Points

- Introduced October 1954 at \$50 (\$340 in 2004 dollars).
- ~104,000 produced by Industrial Development Engineering Associates (IDEA) in Indianapolis under TI contract.
- 4 Transistors, NPN Ge
- Converter, 2xIF, detector, AF
- 22.5 V battery powered

• Some components borrowed from tube receivers, while others had to be developed.

The Transistors

- Texas Instruments was experimenting with silicon transistors in 1954, but had none in production, so grown-junction germanium transistors were used.
- Early semiconductor processes being what they were, sets of four transistors had to be assembled and used for a particular radio – they weren't interchangeable.

Probable Transistor Specs

Collector Voltage	-20	vo ts		
Collector Current	-5	na.		ě
Collector Dissipation (at 30°C)	30	NW .		
Enitter Current	5	na.		20
Anbient Temperature	50	°C		
AVERAGE GAIN CHARACTERISTICS - GROUNDED ENITTER: (at 30%)				1 1
Collector Voltage	-1.5	volts	TTT	-
Collector Current	-0.5			1
Base Current		UQ.		Red Det
Current Anplification Factor	15			计上述记录 计
Power Gain"	30	db		
Noise Factor # (1000 cycles)	22	db	11	
* Source: 1000 ohns; Load: 20,000 ohns				
# At -1.5 voits i-i.0 ma.) to the collector.				
** Socket types: Cinch Nos. 14148 & 14273 or equivalent.			321	

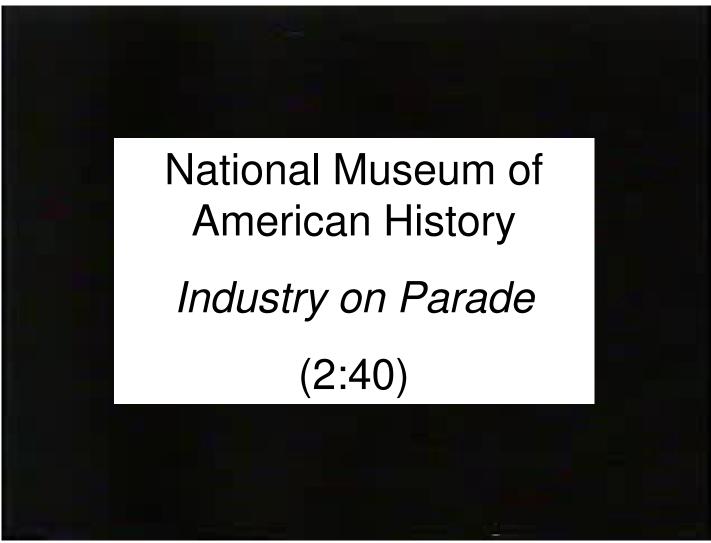
These are specs for the CK-722, a famous PNP grown-junction transistor. Note the complete lack of frequency specs: at that time, α -cutoff was the frequency spec, and 1 MHz was a good value for an RF amplifier.

Why a 22.5 Volt Battery?

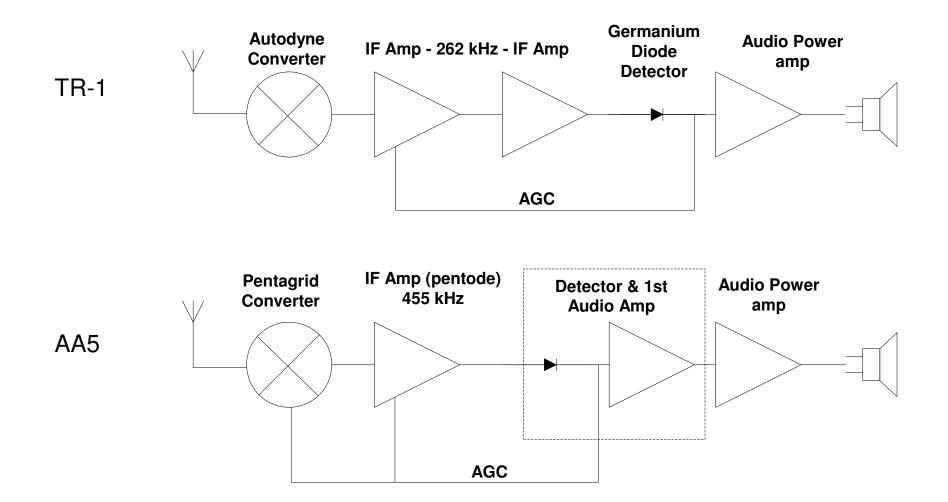
- The NEDA 215-style 22.5 volt battery was popular with portable tube equipment.
- The NEDA 1604-style 9 volt battery was developed by Eveready in 1956, two years too late. 215 and 1604 are the same size.
- Also, the transistors had better characteristics, in particular, lower collector-to-base capacitance, when operated at higher voltages.

Electrolytic Capacitors

- Tube circuits tended to use physically larger, lower capacitance, higher voltage capacitors not suitable for the lowerimpedance transistor circuits.
- International Electronics in Nashville developed the smaller capacitors with a new electrolytic paste and very thin foil.
- These tended to absorb moisture, and were the nemesis of many TR-1s.



Other New Miniature Parts


- Flat PC-mount volume controls with on/off switch.
- IF transformers and converter coil
- Miniature audio output transformer.
- 1/8" earphone jack
- 2 ³⁄₄" speaker
- Flat loopstick antenna

Building the TR-1

New Design, Good Design?

- Autodyne converters were abandoned for pentagrids in tube radios, but re-emerged. It's as close to a pentagrid as you can get without using dual-gate MOSFETs.
- Pentodes have more gain than a germanium transistor near f_T, hence the need for two IF stages.
- Germanium diode forward breakover introduces more distortion than tube diode.
- AGC range better in remote-cutoff pentode IF amps.

How much gain do we need?

- From FCC AM Broadcast diagrams, at 1 MHz, 1 kW gives ~ 20 mV/m field strength at 10 miles based on a ground wave: this is 2 μ W in a 50 Ω system, or -27 dBm^{*}.
- To develop 100 mW (+20 dBm) audio, need gain=20 dBm-(-27 dBm)=47 dB.
- For skywave propagation at 100 miles, field strength is only ~ 100 μV/m, or -72 dBm, so we need 20 dBm-(-72 dBm)=92 dB gain.
- Or, 92 dB gain and (92-47)=45 dB AGC range. (A deaf receiver by ham standards!)

Entertainment Hits of 1954

- 1st major commercial color TV broadcast, the Tournament of Roses parade.
- Fender Stratocaster, 1st popular solid-body electric guitar, is released.
- "White Christmas" is first film shot in VistaVision wide-screen format.
- Michael Todd produces "Around the World in 80 Days", and gives Regency TR-1 radios as mementos to cast members.